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Abstract. Both dissolved organic carbon (DOC) and iron play an important role in biogeochemical

processes in lacustrine benthic environments. Moreover, recent evidence has shown that both

substances can act as active reductants in the redox transformation of organic pollutants. This

paper examines the nature and abundance of DOC and dissolved ferrous iron (FeII) in porewaters

from a sediment core collected in Green Bay, WI, USA. The concentration of dissolved FeII and the

abundance, absorbance at 280 nm (A280 nm), molar absorptivities (e280 nm), molecular weights, and

polydispersities of DOC were measured as a function of depth in porewaters. Dissolved FeII

concentrations increased from 3.6 lM near the sediment–water interface to 163 lM at a depth of

11 cm, then gradually declined. The DOC distribution varied with sediment depth, with the greatest

variation in porewater DOC content and properties occurring in the transitional zone between oxic

and suboxic conditions. The down-core porewater DOC profile was characterized by an increase in

DOC concentration with depth from 0.64 mM OC at 1 cm to 1.23 mM OC at 13 cm, below which

it remained relatively constant. A strong correlation was observed between FeII and DOC con-

centrations, suggesting that these constituents co-accumulate in these porewaters. The correlation

between the DOC concentration of the porewaters and A280 nm was significant, making this

parameter a good predictor for DOC concentrations in these waters. The molecular weight dis-

tributions of the porewater DOC were primarily monomodal, with relatively low polydispersivities.

Weight-average molecular weights ranged from 1505 to 1949 Da. This data set is unique in that it is

the first detailed study of a relatively highly resolved DOC profile of benthic porewater in surficial

sediment from the Laurentian Great Lakes.

Introduction

Dissolved organic carbon (DOC) in sedimentary porewater plays a significant
role in many biogeochemical processes in aquatic environments, including the
flux of sedimentary organic carbon to the overlying water (Alperin et al. 1999;
Burdige et al. 1999); the remineralization and preservation of organic matter
(Alperin et al. 1994; Hedges and Keil 1995; Burdige et al. 1999); and the
distribution (Brownawell and Farrington 1986; Capel and Eisenreich 1990;
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Chin and Gschwend 1992; Mitra and Dickhut 1999), mobility (Thoma et al.
1991; Valsaraj and Sojitra 1997; Skrabal et al. 2000), and bioavailability
(Harkey et al. 1994; Forbes et al. 1998) of contaminants. The porewater DOC
pool is composed of an array of organic compounds that are often opera-
tionally grouped on the basis of their molecular weights. The low-molecular-
weight components (<1 kDa) typically include fatty acids and free sugars and
amino acids. The majority of porewater DOC, however, is contained in the
high-molecular-weight (>1 kDa) fraction (Krom and Sholkovitz 1977; Orem
et al. 1986; Burdige 2001), which consists largely of humic substances (Krom
and Sholkovitz, 1977; Burdige, 2001) with minor amounts of soluble proteins,
carbohydrates, and other non-humic macromolecules.

The humic and fulvic acid components of porewater DOC are believed to have
significant effects on many geochemical processes in sediments, including influ-
ences on the fate and transport of organic and inorganic contaminants and on
iron cycling.Aquatic humic substances can complex/bindmanymetallic (Cabanis
1992; Wood 1996), organometallic (O’Loughlin et al. 2000; Amirbahman et al.
2002), and organic compounds (Chiou et al. 1986; Chin et al. 1997; Perminova et
al. 1999), leading to an apparent increase in the solubility of contaminants;
however, the potential risks of increased solution-phase concentrations are often
offset by the decreased bioavailability of many complexed/bound contaminants
(Landrum et al. 1985; Hutchinson and Sprague 1987; Ortego and Benson 1992).
Humic substances (and in some cases bulk DOC) are effective electron transfer
mediators in abiotic and microbially mediated redox transformations of many
contaminants (Curtis 1991; Dunnivant et al. 1992; Fredrickson et al. 2000;
O’Loughlin and Burris 2000; Kappler and Haderlein 2003; O’Loughlin et al.
2003). Humic substances can also serve as electron donors or terminal electron
acceptors for anaerobic respiration by a phylogenetically diverse array of
microorganisms including iron-reducing, sulfate-reducing, and halorespiring
bacteria, as well as methanogenic archae (Coates et al. 1998; Lovley et al. 1999;
Cervantes et al. 2002; Coates et al. 2002). Moreover, humic substances can act as
electron mediators for dissimilatory iron reduction (Lovley et al. 1998), a key
process in the biogeochemical cycling of iron in aquatic environments.

The reactivity of DOC with respect to a given process often varies with the
source of the DOC, reflecting changes in its chemical and structural properties
(Chin et al. 1997; Perminova et al. 1999; O’Loughlin and Burris 2000; Ma et al.
2001; and many others). Therefore, proper characterization of both the
physical and chemical properties of porewater DOC is crucial for under-
standing its many roles in the biogeochemical processes involved in the cycling
of major and minor elements and in the fate and transport of both organic and
inorganic contaminants. Several studies have examined changes in the abun-
dance and physicochemical properties of DOC in marine sediment porewater
as a function of sediment depth (Orem and Gaudette 1984; Brownawell and
Farrington 1986; Chen et al. 1993; Alperin et al. 1994; Burdige and Gardner
1998; Papadimitriou et al. 2002); however, similar studies of sediment pore-
water DOC from freshwater systems have been limited (Chin and Gschwend
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1991; Chin et al. 1998), and we are unaware of any study that has examined
both the abundance and properties of DOC in interstitial porewaters from
lacustrine systems on the scale of the Laurentian Great Lakes. In this inves-
tigation, we measured the abundance, spectroscopic properties, and molecular
weight distributions of porewater DOC, as well as the concentration of dis-
solved FeII, as a function of depth in sediment cores collected from Green Bay,
providing insights into the nature and properties of lacustrine porewater DOC.

Materials and methods

Sediment coring and porewater extraction

Sediment cores were collected from Lake Michigan’s Green Bay at Station 30
(44�55¢62¢¢N, 87�27¢96¢¢W), northwest of Sturgeon Bay, WI, USA (Figure 1), at
a depth of 27 m using a gravity corer designed to collect three cores simulta-
neously. Upon retrieval of the coring device, the core liners (67 mm i.d.) were
removed and sealed at both ends. Within 4 h of collection, the sediment cores
were transferred to a whole-core squeezer with a hydraulic extruder. The
squeezer design, similar to the one developed by Jahnke (1988), incorporates a
fixed top piston and a movable bottom piston. The squeezer was constructed
from acrylic tubing (67 mm i.d.) and has sampling ports at various positions

Figure 1. Location of Green Bay Station 30.
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along its length. Ports were spaced 1 cm apart from 0 to 5 cm, 2 cm apart from
5 to 15 cm, and 3 cm apart from 15 to 33 cm. Each port was machined to accept
a 1/4-in, 28-thread plastic Luer fitting. The fittings were connected to three-way
valves. Prior to pressurizing, an acid-washed 70-lm Porex filter rod (Porex
Technologies) was inserted through each fitting and into the sediment,
extending to the center of the sediment core. The porous filters retain much of
the particulate material but do not effectively exclude colloidal and dissolved
materials. To remove any tapped air and preserve the redox status of the
porewaters, the valves were flushed with porewater before sampling by gently
pressurizing the core. As the core was pressurized by adjusting the bottom
piston, porewaters were collected in syringes attached to the port valves.
Porewater for FeII determination was collected in acid-washed plastic 10-ml
syringes. The porewaters were filtered through 0.45-lm nylon membrane filters
directly into plastic vials and immediately acidified to�pH 2.0 with trace-metal-
grade HCl to inhibit oxidation of FeII to FeIII. Porewater for DOC, spectral,
and molecular weight determinations was collected in glass syringes. The syr-
inge tips were sealed with stainless steel Luer fittings, and the syringe barrels
were secured with Keck clips. The syringes were then placed in leak-proof bags,
which were subsequently submerged in water and kept in the dark at 4 �C until
analysis. The redox status of porewaters stored in this manner is maintained for
several weeks (Chin and Gschwend 1991); however, our analyses were com-
pleted within 3 days. Particulate material was allowed to settle by placing the
syringes, plunger end down, in a water-filled beaker for 24 h prior to analysis.

DOC and FeII analysis

The DOC content of the porewaters was measured with a Shimadzu 5000 total
OC analyzer, which is similar to the instrument designed by Sugimura and
Suzuki (1988). Samples (10–40 ll) were introduced by direct aqueous injection
onto a platinum-on-alumina catalyst heated to 680 �C in a quartz reaction
tube. Prior to analysis, samples were treated with 20% phosphoric acid and
sparged with CO2-free air for 3 min to remove inorganic carbon. The
combusted organic matter was detected as CO2 gas in a non-dispersive infrared
detector. The carbon analyzer was calibrated with potassium hydrogen phth-
alate standards at C concentrations ranging from 0.3 to 3.0 mM.

The concentration of FeII in the porewaters was assayed in the field within
hours of sample collection using the phenanthroline method (Rand et al. 1976)
and a portable spectrophotometer.

Spectroscopic analysis

Spectrophotometric analyses of the samples were conducted on a Cary 1 dual-
beam scanning ultraviolet-visible spectrophotometer (Varian Instruments).
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Samples were placed in a 1-cm quartz window cuvette and scanned from 700 to
200 nm. Absorbance values were recorded at 280 nm (the region where p–p*
electron transitions occur for a number of aromatic moieties). Molar absorp-
tivities were determined by dividing the absorbance by the OC content of the
porewater and the path length of the sample cuvette.

Molecular weight determinations

We used high-pressure size exclusion chromatography (HPSEC) to measure
both the number- and weight-average molecular weight distributions of
porewater DOC. This technique is fast and non-destructive, and it requires
relatively small volumes of sample. The instrumentation consisted of a Waters
510 solvent pump, a Waters 486 variable-wavelength detector, and a Rheodyne
rotary injector valve equipped with a 20-ll sample loop (Waters Associates,
Milford, MA). A Waters Protein-Pak 125 modified silica column was em-
ployed for this study. The column packing was selected because of its low
residual hydrophobicity and minimal ion-exchange capacity. Porewater eluents
were detected at a wavelength of 224 nm. The mobile phase was composed of
high-purity (18 MX cm) water buffered with phosphate (4 mM) at pH 6.8. In
addition, sodium chloride was added as a ‘swamping electrolyte’ to yield an
ionic strength of 0.1 M. The chromatograms were recorded using the Maxima
GPC software for peak integration and molecular weight determination.
Acetone was used to measure the permeation volume (Vp). The HPSEC system
was calibrated with randomly coiled sodium polystyrenesulfonate (18, 8, 5.4,
and 1.8 K) standards (Polysciences, Inc.). The calibration curves were used to
determine the molecular weight of an analyte, Mi, at some eluted volume i.
Number- (Mn) and weight-averaged (Mw) molecular weights for the humic
substances and colloids were determined using the following equations:

Mn ¼
XN

i¼1

hi=
XN

i¼1

hi=Mi; ð1Þ

Mw ¼
XN

i¼1

hiðMiÞ=
XN

i¼1

hi; ð2Þ

where hi is the height of the sample HPSEC curve eluted at volume i.

Results and discussion

Sediment cores

The sediment cores were relatively undisturbed. Unidentified chironomid lar-
vae were observed extending from the top 1 cm into the overlying water. The
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color of the sediments changed from light brown in the top 4–7 cm to dark
gray at depths greater than 7 cm. Outgassing was evident in the first 3 cm.
Because of the varying porosity within the sediment core, different sampling
ports yielded porewater sample volumes that ranged from 3 to 9 ml; typically,
porewater yields decreased with depth. Although the volume of porewater
recovered may be lower with whole-core squeezing than with other methods
(e.g., sectioning and centrifugation), whole-core squeezing has the advantage of
rapid porewater recovery on-board ship and minimal sample handling, thus
reducing the potential for introducing artifacts. Orem and Gaudette (1984)
showed that changes in the redox status of porewater during recovery and
processing can affect the speciation of substituents susceptible to redox
transformations. They reported an increase in polarity and a decrease in
molecular weight of porefluid DOC when porewater was exposed to the
atmosphere during sample handling. Collection of porewater with a whole-core
squeezer preserves the native redox status of the porewater during collection.

Porewater FeII and DOC

The vertical profile of porewater dissolved FeII (Figure 2) exhibited increasing
FeII concentrations from 3.6 lM near the sediment-water interface to 163 lM
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Figure 2. Profiles of dissolved FeII and DOC in porewater as a function of sediment depth.
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at a depth of 11 cm, then a gradual (though erratic) decline to 93 lM at 30 cm.
The initial increase in porewater dissolved FeII with depth is consistent with the
change in coloration of the sediments from light brown in the top 4–7 cm,
transitioning to dark gray below 7 cm, with gas pockets below 5 cm (possibly
resulting from outgassing of methane, molecular hydrogen, and/or hydrogen
sulfide). Similar vertical porewater profiles of dissolved FeII have been reported
for surficial sediments (<1 m in depth) in marine environments (Burdige 1993;
Thamdrup et al. 1994; Krom et al. 2002). The general trend of increasing
dissolved FeII with depth in sedimentary porewaters is largely the result of
reduction of FeIII oxides and oxyhydroxides (e.g., ferrihydrite, goethite, and
lepidocrocite) and other FeIII-bearing minerals by dissimilatory iron-reducing
bacteria and abiotic processes.

The down-core porewater DOC concentration profile was characterized by
an increase with depth from 0.64 mM at 1 cm to 1.23 mM at 13 cm, below
which the concentration remained relatively constant (Figure 2). A general
trend of increasing porefluid DOC with increasing depth is commonly observed
with surficial sediments (<1 m depth) from lacustrine, estuarine, and marine
environments (Krom and Sholkovitz 1977; Brownawell and Farrington 1986;
Chin and Gschwend 1991; Chen et al. 1993; Alperin et al. 1994; Burdige and
Gardner 1998; Chin et al. 1998). The increase of porewater DOC with depth in
surficial sediments is believed to result from several processes, including the
accumulation of recalcitrant DOC (primarily humic substances) formed by
abiotic polymerization of low-molecular-weight components of the DOC pool
and microbial and abiotic degradation of particulate organic matter (Burdige
2002, and references therein).

The correlation between porefluid DOC and dissolved FeII concentrations
was strong (r2 = 0.85). A similarly robust correlation between porefluid DOC
and dissolved FeII concentrations was observed for surficial sediment pore-
waters collected from a freshwater wetland (Chin et al. 1998). Ferrous iron is
readily complexed by DOC (Theis and Singer 1973), and FeII–DOC complexes
have been identified in porewaters from salt marsh sediments (Luther et al.
1996). Thus, the co-accumulation of DOC and FeII in the porewaters from
Green Bay is consistent with the formation of FeII–DOC complexes.

Porewater spectral analysis

The p–p* transitions for phenolic substances, analines, benzoic acids, polyenes,
and polycyclic aromatic hydrocarbons occur from �270 to 280 nm (Braun et
al. 1988). Because many humic substances contain functional groups with
structures similar to those of the above compounds, we measured the
absorption (A) and determined the molar extinction coefficient (or molar
absorptivity (e)) at 280 nm for each of the porewater samples. The A280 nm and
e280 nm profiles (Figure 3) of the organic matter in the porewaters generally
increased with depth in a manner roughly consistent with the DOC profile
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(Figure 2). The A280 nm values increased from 0.144 near the sediment–water
interface to 0.315 at 11 cm. Below 11 cm, A280 nm decreased slightly, but
overall remained relatively constant. Similarly, e280 nm was lower near the
surface at 218.1 l (mol-OC)�1 cm�1 at 2 cm, peaked at 276.0 l (mol-
OC)�1 cm�1 at 11 cm, and then decreased slightly. On average, e280 nm values
for these sediments were similar to values for porewaters from a freshwater
wetland (265 ± 38 l (mol-OC)�1 cm�1) (Chin et al. 1998), but our e280 nm

values were substantially higher (250 ± 16 l (mol-OC)�1 cm�1) than those
reported by Chin et al. (1991) for marine sediment porewater
(108 ± 25 l (mol-OC)�1 cm�1).

Light absorbance has been used (with varying success) to estimate DOC
concentrations in a variety of natural waters (Stewart and Wetzel 1981; Yel-
verton and Hackney 1986; De Haan and De Boer 1987). This approach is
limited in that it only ’sees’ the fraction of the DOC pool that contains chro-
mophores that absorb light at the wavelength(s) employed. Thus, DOC mea-
surements using these techniques may underestimate DOC concentrations by
an amount corresponding to the fraction of the DOC pool that is ‘invisible’ at
the given wavelength. We observed a strong correlation between the DOC
content of the porewaters and their absorbance at 280 nm (Figure 4), thus
A280 nm appears to be a good predictor for DOC concentration in these waters.
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Figure 3. Profiles of porewater absorbance at 280 nm (A280 nm) and molar absorptivity at 280 nm

(e280 nm) as a function of sediment depth.
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Size of porewater DOC

All porewater DOC samples eluted from the HPSEC column as broad, uni-
modal distributions with poorly resolved shoulders and minor trailing peaks,
as shown for porewater from depths of 1, 11, and 30 cm (Figure 5). The
inability of the DOC to separate into discrete components defined by fractions
with distinct molecular weights reflects the fact that DOC is a complex mixture
of species with varying molecular weights that are difficult to resolve chro-
matographically; higher-molecular-weight components elute earlier than low-
er-molecular-weight components. The HPSEC chromatograms of GB30
porewaters differed significantly from chromatograms of porewater DOC from
sediments from the northern basin of Lake Michigan (Chin et al. 1994). The
Lake Michigan porewaters, collected and analyzed in the same manners as the
GB30 porewaters, exhibited multimodal chromatograms with sharper, better
resolved peaks. Moreover, distinct differences occurred in the porewater DOC
distributions with depth in the Lake Michigan sediments: DOC in the oxic
sediments was composed of relatively small organic compounds, while DOC in
suboxic sediments exhibited a much larger fulvic-like peak, similar to that of
Suwannee River fulvate (O’Loughlin and Chin 2000). In contrast, no signifi-
cant differences in the overall DOC distributions occurred with changes in
depth (Figure 5).

The fulvic-like distribution of the molecular weights of porewater DOC
suggest that much of the DOC pool is composed of humic-type material.
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Indeed, the weight-average and number-average molecular weights of the
porewater DOC are within the range of molecular weight distributions previ-
ously reported for reference aquatic fulvic acids (Chin et al. 1994) and for
freshwater and marine porewaters (Chin and Gschwend 1991; Chin et al. 1994,
1998). Moreover, our findings are consistent with the results of previous studies
indicating that the majority of porewater DOC is composed of humic sub-
stances (Krom and Sholkovitz 1977; Burdige 2001). However, the determina-
tion of molecular weight distribution by HPSEC with ultraviolet absorbance
(UVA) detection may not detect significant components of the DOC pool (Her
et al. 2002; Perminova et al. 2003); specifically, compounds with low absorp-
tivities at the chosen wavelength (O’Loughlin and Chin 2001). Thus, the
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dominance of humic substances in the porewaters from core GB30, as sug-
gested by the molecular weight distributions determined by HPSEC-UVA, may
be overestimated. Changes with depth in the weight- and number-average
molecular weights of the porewater DOC from sediment core GB30 were subtle
(Figure 6); molecular weights increased gradually from 1 to 13 cm, then
gradually decreased with depth.

The molecular weight distribution of a mixture of substances can be quan-
tified by calculating its polydispersity from the ratio of the weight-average
molecular weight to the number-average molecular weight. Removal of large
or small constituents from the mixture is reflected in the polydispersity. The
polydispersity of the porewater organic matter was relatively low (2.13–2.68:
Figure 6), suggesting that the DOC exists within a narrow range of molecular
weights. No systematic change in polydispersity with depth was apparent.
However, given the selective nature of HPSEC with UVA detection, the
polydispersities could have been higher and more variable, because small and
large non-chromophoric DOC components (e.g., polysaccharides) are not in-
cluded in the molecular weight determination and thus are not reflected in the
calculated polydispersity values.

Chin et al. (1994) reported a strong correlation between e280 nm and
molecular weight for aquatic fulvic and humic acids and suggested that this
correlation might provide a rapid, easy means to estimate the molecular
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weight of aquatic humic substances. The data from core GB30 are com-
pared with results for reference aquatic humic substances in Figure 7. The
graph indicates that using the relationship between e280 nm and molecular
weight for aquatic humic substances to estimate the molecular weights of
the porewater DOC would yield values that are lower by 7–25% than the
those determined by HPSEC. The differences between the experimentally
determined molecular weights and those predicted by the model are likely
due to differences in the origins of the two groups of materials. The ref-
erence humic substances are derived primarily from terrestrial plant mate-
rials (allochthonous material) and represent a defined fraction of the organic
matter pool present in the sample at the time of collection, while the or-
ganic matter in the porewaters was not fractionated and is derived from
both allochthonous and autochthonous materials; the waters of Green Bay
support particularly high levels of primary productivity (hence the name
Green Bay). Given that algae-derived humic materials are composed of
organic moieties having fewer conjugate bonds than terrestrial humic sub-
stances (Harvey et al. 1983), plus the higher aromatic content of terrestrial
plant materials, it is not surprising that humic substances derived from
terrestrial materials would have relatively higher e280 nm. Although addi-
tional refinement of this relationship is required, we believe that e280 nm can
be used to provide a reasonable first approximation of the molecular weight
of aquatic humic substances.
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Conclusions

The DOC in sedimentary porewaters from the GB30 site varied as a function of
changes in DOC concentration and properties with sediment depth, with the
greatest variation occurring in the transitional zone between oxic and suboxic
regions. Our data are unique in that ours is the first detailed study of a relatively
highly resolved DOC profile in benthic porewater profile from the Laurentian
Great Lakes. Because considerable care was undertaken to preserve the redox
conditions within the porewaters, strong correlations were observed between
DOC and FeII, suggesting the formation of complexes between these two spe-
cies. Both DOC and iron play an important role in biogeochemical processes in
lacustrine benthic environments (e.g., as electron donors, electron acceptors,
and substrates for microbial activity, etc). Moreover, recent evidence has shown
that both substances can function as active reductants in the redox transfor-
mation of organic pollutants. Thus, characterization of the nature and abun-
dance of DOC in porewaters and its interactions with iron will greatly advance
our knowledge of the role that DOC and iron play in the biogeochemical cycling
of environmentally relevant compounds in benthic environments.
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